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1 Introduction

This article deals with an empirical Bayes modeling approach (by which is meant

latent ability random sampling in the IRT context) to the item response theory (IRT)

modeling of psychological tests. Suppose we randomly sample N persons from a

specified population, and then administer a test consisting of n items. The data

structure for a randomly selected examinee can be expressed by a random vector

(x1, -, .,,,),

where X 1,... ,X,, denote item responses and 0 denotes examinee ability, which is

unobservable. Abstractly, in an empirical Bayes problem the data is modeled by

independent identically distributed (i.i.d.) random vectors

((1 ), -x (1)901) (X (P), -X (2),0,- (Xl(N),-x( N), ON).-

One important measurement goal is the estimation/prediction of each examinee's 0.

Clearly one should use the first examinee response X ) ... , XV1 ) to predict the actual

value of 01. However, unless the distribution of 0 is completly specified, there is useful

information in
X ()..., X ()..() . ), ..., ...) X ),

the second through Nth examinee responses, about the unknown distribution of 0 and

thus about the unknown ability 01 in particular, which we want to estimate. Thus an

alternative approach to using only (X(1), ... , X,( )) is to use all of the test responses in

making inferenses about 01.

Let Xj be the score for a randomly selected examinee on the jth item; Xi = 1 if

the answer is correct, Xj = 0 if in correct, and let

1 with probability Pj(O)
= 0 with probability 1 - P(O)
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where Pj(0) denotes the probability of correct response for a randomly chosen exam-

inee of ability 0, that is,

P(O) = P{XJ = 110},

where 0 is unknown and has the domain (-oo, oo) or some subinterval on (-0o, o).

We make two assumptions about the IRT models of this paper:

(a) Local Independence (also called Conditional Independence)

P( xl,...,x.10) def P{( X,...,X.) =(x,...,x.)IO}
n

= I P{X = xj1O }
j=1

n

- II P(0)X'[1 - Pj(O)] ' -

j=1

(b) Monotonicity: each Pj(O) is strictly increasing in 0.

Lord (1980) makes an interesting remark about the existence of a prior distribution

for ability:

"In work with published tests, it is usual to test similar groups of ex-

aminees year after year with parallel forms of the same test. When this

happens, we can form a good picture of the frequency distribution of ability

in the next group of examinees to be tested."

This suggests taking an empirical Bayes approach to IRT modeling, in particular

assuming partial knowledge about the distribution of 0 and thereby being able to

make efficient use of the response data to make inferences about the distribution of 0

and thus make inferences about the unobservable examinee abilities. The distribution

of a test response X1,..., X, is indexed by 0, which belongs to the parameter space

E; that is, each 0 E E governs a test response distribution. Let Ln(O) denote the

log-likelihood, that is

Ln(O) = log{Pn( X 1 ,. .. ,XIO)}.
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If we assume that the prior distribution has density 11(0), according to Bayes' theorem,

the posterior density for each given

( X 1 ,...,X )=(X1,...,xX.)

can be written as

n,(01Xl,... ,x) P( x 1,.. . ,x10)H(0) (1)
p.( x 1,... ,x)

exp{L.(O)}nI(o)
P( x 1,... )

where

P,,( X , X ) .( xl ,. . ., xn]O)rI( O)dO.

Notice that, the "prior" and "posterior" refer to the relationship between the

distributions and the observation xl,... ,x. E.g., I1(0) is prior to xl,... ,x,, and

11(01 X1,...,-X)

is posterior to xi,...,x,. These ideas can be easily extended to the study of the

asymptotic behaviour of the posterior distribution. In particular, for each x1,.. Xn,

what can be said about the posterior probability of 0 as n tends to infinity?

It has long been part of the IRT folklore that under the usual empirical Bayes

unidimensional IRT modeling approach, the posterior distribution of 0 given test

response is approximately normal for a long test. Holland (1990) indicates:

"At present I know of no through discussion of the asymptotic posterior

normality of latent variable distributions and this would appear to be an

interesting area for further research."

In classical statistics, when ( X1,..., X,) are i.i.d., an important result (informally

stated) is that, for n large, the posterior density Hn(OI X 1 ,. . ,X,) is approximately
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equal to the normal density N(0n, Pa), where On is the maximum-likelihood estimator

(or MLE) of 0 and &n2 = {-L"(0)} , where L,(Ok) is the second derivative with

respect to 0 of the log-likelihood evaluated at On. On and &' here are functions of

( X 1,. . . ,Xn) only. Intuitively, &2 -+ 0 in applications, usually like 1/n.

Lindley(1965) proposed a heuristic approach to prove the above result by expand-

ing the log-likelihood in Taylor series in 0 about On,

L(O) = Ln(k) + 1(0- O) 2 L(O) + Rn,

where Rn is a remainder term. Since the log-likelihood has a maximum at , the first

derivative vanishes there. As shown above the posterior density viewed as a function

of 0 for fixed x1 , x, is proportional to

[(O)exp{Ln(O)}.

Therefore,

rn.(0 1, n.., ) o, H(O)expfL.(in) - 2 + n}.

Since L.(0n) does not involve 0, it may be absorbed into the omitted constant of

proportionality so that

Hn(O X1,. .- .X) ll(o)expl{ (9 n + Rn}, (2)2&'2

where the remainder, R, is claimed to be negligible when compared with the other

term in (2). Because &2 -- 0 like 1/n, the density in (2) becomes concentrated at

0. in the limit, thus allowing 11(0) to also be absorbed into the omitted constant of

proportionality. Thus,

n.(Oj X1, - X) O eXP{ (0-6n)2
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as desired. However, Lindley (1965) did not give a rigorous proof.

Walker(1969) proved that under certain conditions, the posterior probability of
On + a&, < 0 < On + b&,, namely

fin+n rIn (0 1 X1,. . ., Xn) dO,

converges in probability Pe0 to

(2r)_1/2 Lb e 2

as n -+ oo. Here, as the notation Poo indicates, in the generation of X1,..., Xn

we assume 00 is the true value of 0. That is X 1,... , Xn is generated according to

the distribution Pn( X,.. . ,Xnl0o). Then, using the rules of conditional probability

computation, it is easy to show that one way to interpret Walker's result is that

P[On + a&, < 00 < On + b&,, X1, ... Xn, Oo]

converges in probability to
(2)-1/2Je a

(27r)/ Lb Cy'2 dy

as n --+ cc. That is, for each fixed (but unknown) 00 we have an asymptotic confi-

dence interval for each choice of a < b.

As we know, for all realistic applications, the item characteristic curves are not

identical. Therefore, the {Xj} we have are merely independent, conditional on 0, but

not identically distributed. However, the general IRT model enables us to prove, by

adapting the approach that Walker (1969) applied to i.i.d. random variables,

(a) The "weak" convergence, that is, for -oo < a < b < oo,

nnR(O 1X, Xn)dO
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converges in probability P0o to

A (27r) - 1 /2 e- ]ydy

as n -* oo. That is,

P, f{IAn- Al < }- 1, as n -- , for arbitrary E > O.

(b) The strong convergence of An: that is,

Peo {lim An = A} = 1;

(c) Convergence in "manifest" probability, or "0o free" convergence, that is, An con-

verges to A in the manifest (or marginal in the sense that 0o is integrated out)

probability P, which is defined, for any fixed n

P{(XI,...Xn) XI ( ,X. )}

= I Pn( XI,.. .,XnO)r(O)dO.

This result is also easily interpretable as an asymptotic confidence inteval for

ability. That is, it assures that

P{On + an < 0 < On + bn I XI,...,X,}

converges in probability to

(2 r) 1/2  b I_ 2

as n --+ oo. That is, for any randomly sampled examinee, we have an asymptotic

confidence inteval for each choice of a < b. Here in (c), in contrast to (a), the

value of 0 for the randomly sampled examinee is not fixed.

(d) The weak and strong consistency of the MLE On, which are intermediate results

in the proofs of (a) and (b).

Proving (a)-(c) is the main purpose of this paper, thereby meeting the Holland

challenge quoted above.
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2 Further Notation and Assumptions

2.1 Basic Notation

00: The true parameter. In saying that Xj is a random variable we infer that Xj has

the density

P (O)* '1- Pj(0)] Xj=O, 1,

for some fixed value of 0. Denote this value by 0 0, which we refer to as the true

parameter.

9}: The Maximum Likelihood Estimator(MLE) of 0, which is defined as a solution

(in general non-unique), of

P.( X,,... ,X.I0k) = max{P,( Xl,. . . ,X,,0)}, (3)
OEe

if it exists, or equivalently, of

L,(0,,) = max{L,(0)}. (4)

I(0): The item information function of item j, which is equal to

P(0) = ()} 2

P (0)[1- Pi

where P (0) is the first derivative of Pj(O) with respect to 0.

I()(0): The test information function

n

I(n)(0) = 1 I(0).
j=1

a 2 :

n

n) (5)

noting that our definition of 6, used hereafter in the paper differs from the often

used 6, L! {-L(O.)} I mentioned above.
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A3(0): The logit function of item j

Aj(O) = log{ P(O) }(6)
1z-P(0)()

Z ZP(0) = p(O)X,1  - P i(O)1- x ,

0= {Pj(o)Xj[1 - Pj(Oo)]lX1. (7)

2.2 Regularity Conditions

Some "regularity" conditions and their explanations will be stated before going

into details about our theorems. Fix 0o E 0: There are five basic assumptions:

(Al): Let 0 E 0, where E is (-oo, oo) or a bounded or unbounded interval in

(-oc, oo). Let the prior density 11(0) be continuous and positive at 00, where

00 is assumed be the true value of 0.

(A2): Pj(O) is twice continuously differentiable and P (0) and P'(0) are bounded in

absolute value uniformly with respect to both 0 and j in some closed interval

No of Oo E 0.

(A3): For every fixed 0 6 0o, assume for some given c(0) > 0

n

-lfi-n-lEEZE 0 Z(0) _ -c(0) (8)
1=l

and

sup IAj(0)1 < oo.

(See Footnote1 .) Note that

Ln(O) - in(Oo)= E Z(O). (9)

1For a sequence of real number {an), if limn,,o an does not exist, then {an} must have more

than one limit point. Tt'-ooan denotes the largest limit point (or upper limit).
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(A4): {I(0)} and {A;'(0)} and {A l'(0)} are bounded in absolute value uniformly in

j and in 0 E No, No specified in (A2) above.

(A5):
lim inf- > C(0o) > o.

That is, asymptotically, the average information at 00 is bounded away from 0.

Although 0 may be (-oo, oo), we always assume without loss of generanality that

00 is contained in a finite interval, e.g. [-a, a] for some fixed a > 0. This is because

from the psychometric viewpoint, taking var(O) =1 for convenience, the same edu-

cational decision is made about people with 0 = 4 and people with 0 = 24. Thus,

assuming -5 < 0 < 5 does no practical damage.

The condition (8) of assumption (A3), perhaps, looks unfamiliar. But it plays

an important role in the proof of Lemma 3.1 below, ensuring the identifiability of

00. That is, when 00 is the true value of 0, E{L,,(O) - Ln(0o)} should be sufficiently

negative for all values of 0 5# 00 . In other words, this condition allows us to "identify"

00 by maximizing the likelihood function. (A3) acts as a remedy in the case that {Xj }

are merely independent but not identically distributed. In other words, if they are

i.i.d., as is the case in Walker's proof, then (A3) is automatically satisfied. To see

this, note in the i.i.d. case that

n-1 Eeo{Z(0)} = EO{Z,(0)}.
j=1

Note that
Eeep{1 0 P 1 (0) 1-P(0)

Eooexp{Z(O)} = PI(Oo) A() + (1 - P1(00)) 1 - Pl(0O)

Thus, since -logx is strictly convex, Jensen's inequality (Lehmann, p50) shows that

for arbitrary 0

EeOZI(O) - Eoo0 log{Y(O)}] < log{EeO[Y(O)]} 0 0, (10)
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where

Y(O) = exp{ZI(O)}.

Thus (8) is satisfied by taking

c(O) = -Eoo{Z(O)}.

Unfortunately {Z3 (O)} in IRT models are not identically distributed, so we have to

impose some supplementary condition. According to (10), n-1 Fn 1 Ea0Zj(0) will be

negative, however, this does not enable us to obtain (8). For what classes of IRT

models then does (8) hold? Consider the case in which each EooZj(O) satisfies, for

some c(0),

EeoZj(O) <_ -c(O) < 0. (11)

It is obvious that (8) holds. However, this condition is stronger than needed. It would

suffice to merely require that a "certain proportion" of the EoZj(O)s satisfy

condition (11), say one in every K, no matter how large the K is. Mathematically

speaking, this would imply

n _Z,) -c(0)n -c(0)n-1 =1: Eoo Zj(0) _< n- In- -  - _-4 0) < 0,
j=1KK

and so
n

limon EoZ(8) :_ - (O) < 0.
5=1

Actually, (8) does not seem very restrictive in IRT models incurred in practice. As

evidence, consider a "typical" IRT model of 40 3PL items, in which the item parame-

ters are precalibrated from a real ACT math test. The graphs illustrated in Figure 1

are the Eoo Zi(O)s computed from this model. Clearly (8) seems to be holding.

(A4) and (A5) are used to make L'"(0) behave sufficiently well for 0 near 0o. Con-

dition (A5) implies that the test information function evaluated at 00 tends to infinity

with the same speed as n. These five conditions would not be difficult to verify in

10
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Figure 1: Eeo{Zj(O)}s for 40 items, ACT-MATH Test (Drasgow, 1987).

particular applications and hence are really fairly mild modeling assumptions.

3 The Main Theorems

In this section we will introduce three theorems and the major steps of the proof
of Theorem 3.1, the basic theorem. The rigorous proofs of these theorems, as well as
their related lemmas and corollaries, are contained in an appendix.

3.1 Convergence in Probability

Theorem 3.1 Suppose that conditions (Al) through (A5) hold. Let 0,, be an MLE
of 0 o, and &, be the square root of {(n) ( )}I Then, for -oo < a < b < 0o, the
posterior probability of 0,, + a&,, < 0 < 0k + b&,,, namely

i. n r~n(O I X1, , X1)dO,

I1I



tends in Po to

(2r) - 2  e-1 du,

as n --+ x.

Theorem 3.1 is the basic result in our asymptotic posterior normality work. Note

that A, is a random variable depending on X1,...,X,,. Thus its distribution is

determined by the parameter 00 and A, -* A in Pa0 means

lim Poo{lAn - Al < c} 1, for arbitrary c > 0.

Outline of Proof. To prove the theorem, write

I +'"n(0jl x ,... Xn)dO G
Ji.+om. " P.( X,, ... IX.)

where

G = j1+b"II(0)P.( XA,... ,Xn0)d0, (12)

and

Pn( Xl,...,X,) = jII(O)Pn( Xa,...,XnIO)dO.

It suffices to prove
P( X1 ,.. .,X) (27r)1/211(00) (13)

Pn ( X1, -,.X, k)

as n -. oo, in P 0o, and

G (27r )./211C0o) {G(a) - 4(b)} (14)pn ( X1,,...X,,lk)&,,

as n - oo, in Peo, where 4(x) = (27r) - 1/2 f-o e- 2 du.
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In the following we will present the general idea to prove (13). ((14) is proved by

the similar method.) First expand Ln(O) at 0n by Taylor expansion: we have

L (0) - L (6n) ( 0 -2")2 (0*)

( )2 (1- R), (15)

2&n

where 0n is a point between 0 and On, and &2 is defined by (5) and R is defined by:

R1, a= R(O, X,,..., X ) = 1 + &2 L" (O')

{L(09*) + I(n )(k)}/I(n)(6n). (16)

Split P ( X 1,... ,X') into two parts as follows

Pn( X,.. .,X,) = j1- >_ rI(O)P'( X1,. . . ,X' O)dO

+ I 1_l<I(O)P' (X1,...,XIO)dO

d=f G, + G2 . (17)

Therefore, recalling that L(O) = log P ( Xl,... ,XnIO),

P' (GX,,.,' exp{L (Oo) - L (6,) f I(n)(k) } / 2

× 4o I(O)exp{L(O) - L(Oo)}dO (18)

and, using (15),

G2 I(Oo) f 11(9)(9
(o 1 l() exp{ - )(1 - Rn)}dO. (19)Pn( x,,...,X' lO'n)6n U,' _0o1<6 fl(Oo) exf 2&2

Thus, if
G1G-,. 0 in Pe0  (20)Pn( X1, , . . ., X,,Ik)6,

and
G2- (27r)1/ 2II(0o) in Pa., (21)

Pn ( X1, , . . ., X,,,)&1

13



then (13) holds. For establishing (20), first consider (18): If 0,, is consistent then

exp{L. (Oo)- L. (9,,)} goes to a constant as n approaches oo. On the other hand, since

{I(,,)(k)}1/2 approaches oo like n /2 , we need to make L,,(0) - L'(o) "sufficiently

negative" so that the integral of (18) approaches 0 faster than n- /2 and hence the

left hand side of (20) can be neglected outside the b region of 00. As for establishing

(21), consider (19): Since 11(0) is continous, II(0)/II(0o) will be close to one for b

sufficiently small, and we need to make RP "sufficiently small" inside the 6 region

so that we can estimate the integral by

10_-ol<6 exp{ (0 - 9)2 }dO.

Mathematically speaking, we need the following two lemmas.

Lemma 3.1 Suppose that conditions (AI) through (A3) hold. For any b > 0, there

exists k(b) > 0 such that

lim Pao0{ sup n-1[L (0)- L' (o)] < -k(6)} = 1.
O1-Go1>6

Lemma 3.2 Suppose that conditions (A1) through (A5) hold. Then

Ln(0) - L,,() = (0- k) 2 L"(0')/2 - 0I( - R' ), (22)

n n2&2 (1 ),

where 0 , is a point between 0 and 0,,, and Rn is defined by (16). Also, for any 6 > 0,

there exists b such that

lim P{ sup IR(0, X,,...,X,,)I <e} = 1. (23)

n- I8-0o 1<6

As a by-product, Lemma 3.1 ensures the consistency of the MLE 0,, which is

labeled as Corollary 3.1.

Corollary 3.1 Suppose that conditions (Al) through (A3) hold. Than 0, is weakly

consistent, namely

lim 0, = 00 in Pa.. (24)

14



It can be shown that (22) of Lemma 3.2 makes it possible for us to use the

reciprocal of the test information as the variance estimate (see (5)), instead of

&2de 1 = -LI(07)H-

as Lindley (1965) and Walker (1969) each suggested. The variance estimate (5) we

have chosen has the following advantages:

* The information function I(n)( ) is always positive. -L"( ), by contrast, could

be negative, especially when the sample size is not large enough. So, some times

{-L"( )}1/2 may not exist.

* The information function is easier to calculate, while the calculation of L"( ) is

more complicated.

Future study should be undertaken to compare the speed of the convergence and to

explore any further advantages.

3.2 Convergence Almost Surely

As discussed in the preceding subsection, the posterior distribution for , de-

rived from a proper prior density HI(O), converges in probability to the standard

normal distribution. In this subsection we will see that a stronger result, conver-

gence almost surely, (also referred to as strong, almost everywhere, or with

probability one convergence), can be achieved under the same assumptions.

Theorem 3.2 Suppose that conditions (Al) through (A5) hold. Let in be an MLE

of 00, and 6,n be the square root of {I(n)(in)}-. Then, for -oo < a < b < oo, the

posterior probability of On + a&, < 0 < 0, + b5, namely

A /e+Oln H,(Ol, Xl,...,Xn)dO,

15



tends to

A_ (27r)_/2je_ ,2du almost surely,

as n -- + o.

What is the difference between the conclusions of Theorem 3.1 and Theorem 3.2?

It is instructive to look at the following two statements which are equivalent to these

two theorems respectively:

" The sequence {An} is said to converge in probability Poo to A if and only if for

each f > 0,
lim Pe, {IAn - Al > e} = 0,

or equivalently
lim Po {IAn- Al < f} = 1. (25)
n-oo

" The sequence {An} is said to converge to A almost surely (or in probability one,

strongly, almost everywhere, etc.) if and only if, for each f > 0,

lim Poo {max JA, - Al < e} = 1. (26)

Since (26) clearly implies (25), we have the immediate conclusion that Theorem 3.2

implies Theorem 3.1.

In order to have a better understanding about convergence almost surely, it

is interesting to quote the following example by Stout (1974, p9):

"In statistics there are certain situations where almost sure conver-

gence seems a more relevant concept than convergence in probability. Con-

sider a physician who treats patients with a drug having the same unknown

cure probability of p for each patient. The physician is willing to continue

16



use of the drug as long as no superior drug is found. Along with admin-

istering the drug, he estimates the cure probability from time to time by

dividing the number of cures up to that point in time by the number of

patients treated. If n is the number of patients treated, denote this esti-

mating random variable by X(n). Suppose the physician wishes to estimate

p within a prescribed tolerance f > 0. He asks whether he will ever reach a

point in time such that with high probability, all subsequent estimates will

fall within f of p. That is, he wonders for prescribed 5 > 0 whether there

exisis an integer N such that

P{max IX(n) - PI < } 1 - b.
n>N

The weak law of large numbers says only that

P{IXl(n) - p < }--*1 as n -oo

and hence does not answer his question. It is only by the strong law of

large numbers that the existence of such an N is indeed guaranteed."

3.3 Convergence in Manifest Probability

Perhaps it may seem confusing to some readers to simultaneously have 0 fixed

at 00 and have 0 be a random variable governed by H(0), as is the case in Theorems

3.1 and 3.2. Thus some sort of clarification seems needed. The idea that leads to the

adoption of the notation 0o is the following: For any given response vector

(xl,-,,x,) = (X,,....,IX,),

if it comes from a randomly selected examinee we can always assume that he or she

has specific ability , say 0o. However, in most cases 0 0 is unknown but hypothetically

specified. Under this assumption, the distribution of X,...,Xn is induced by 00.

On the other hand, the given x1,. .. ,x,, can also be interpreted just as a pattern.

17



Our interest is to know the proportion of examinees in the population who would

produce response vector x 1,..., x,. Denote this proportion number as

P{( X,,...,Xn) = ( r,...,.Xn)} (27)

and call it the manifest probability. It is clearly that

PJ( x ,-, ,xn) = l ,...,X,)} ___

and

y P{(X,,...,Xn)=(xl,,...,x, )} = 1.

Since we know the prior density Hl(0), (27) can be obtained by integrating the joint

probability with respect to 0, that is

P{( X 1,'' , X) =( X1 ,. x-)} = f0 Pn( X1,...,xnIO)H(O)dO.

According to Theorem 3.1,

+ H(0I X 1,... X,)dO --* (a) -4(b) (28)
Jn+abn

in probability Po,. It is very interesting to notice that the right hand side of (28) is

free of 0o, which suggests that we can further prove that the convergence is "free of

0o". Since (28) holds for "every" 0o, intuitively speaking, it should be true that (28)

holds under the "average of Oos". Therefore, we ought to be able to substitute the

manifest probability P for P0 :

Theorem 3.3 Suppose that conditions (Al) through (A5) hold. Let in be defined by

(3) or (4), and &n be the square root of {I(n)(,)}-. Then, for -oo < a < b < oo,

the posterior probability of On + a&, < 0 < On + b&,, namely

Jn f ,(, X+a-- ,,nO

tends to
(27r) - / 2 jb .2

1e- du
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in manifest probability P.

Summarizing the last few paragraphs, Theorem 3.1 implies that the asymptotic

posterior normality holds for any randomly chosen examinee with ability 00. On

the other hand, Theorem 3.3 ensures that this asymptotic property holds for any

randomly sampled examinee from the population. In other words, one is sampled from

the subpopulation and the other is sampled from the whole population. Therefore,

Theorem 3.3 has more general meaning. (The original idea of Theorem 3.3 was

proposed by Brian Junker in personal conversation with one of the authors.)

4 Conclusions

The asymptotic posterior normality of latent variable distributions has been es-

tablished under very general and appropriate hypotheses. This result has (at least)

two important implications. First, it provides a probabilistic basis for assessing ability

estimation accuracy in the long test case. Second, it provides an important first step

in making rigorous the Dutch Identity conjecture (Holland, 1990), which, roughly

speaking, claims that only 2 parameters per item are required in order to obtain good

long test model fit for unidimensional test data.

Further, the consistency of MLE of 0 has been discussed. It is very interesting

to mention that our proof of the consistency of the 0,, is very similar to the Wald's

proof(1949) for the X 1,...,X,, i.i.d. case. It is worth remarking that the general

IRT model (that is, non identically distributed responses) yields as powerful asymp-

totic results as the i.i.d. model - the favorite model of most statisticians, which has

so many good qualities.
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Finally we should indicate that for general multidimensional IRT models the

asymptotic posterior normality can be proved for the random vector 0 given test

response X,...,X,, under suitable regularity conditions.
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Appendix: Proofs of Main Theorems
In this appendix we will prove the results introduced in Section 3.

A The Proof of Convergence in Probability

The proof of Theorem 3.1 is based on Lemma 3.1, Lemma 3.2, and Corollary

3.1. Before going to the proofs , two important theorems, from real analysis and

probability theory respectively, should be introduced here:

Theorem A.1 (Heine-Borel covering theorem) (Billingsley, p566)

If [a, b] C nlO I(ak, bk), then [a, b] C nl (ak, bk) for some n.

Remark: Equivalent to the above theorem is the assertion that a bounded, closed set

is compact.

Theorem A.2 (Strong law of large number (Serfling, p27))

Let X 1,X 2,... be independent with means li, P2, ...and variances a,2 ,0 2
2 . If the

series = o /j 2 converges, then

n n

n-1 E Xj - n-' E pi --+ 0 with probability one.
j=1 j=1

Proof of Lemma 3.1:

Remark: The proof of Lemma 3.1 is an improvement over Walker's result, which only

covers the i.i.d. case. The strategy used in the proof can be described by two steps:

(a) to prove, for any Oi 5 0o, there exists b5i > 0 such that

lim Poo{ sup n-[L,(O) - Ln(00)] < -c,(b,)} = 1.
n.-oo I-,il<6,

We put the subscript i here because we only need finite number of such Ois.
2A set C is defined to be compact if each cover of it by open sets has a finite subcover - that is,

if [Go : 0 E 0] covers C and each Ge is open, then some finite subcollection {Ge,, ... , G9 }covers C.
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(b) to use Theorem A-1 to cover {10 - Ool > b) nl C , where C is a compact set, by a

finite number of open sets 10 - Oil < b, i=1,..,m.

For any 0 #6 00, recalling from (7), the definition of Z,(0), and (9), it follows that

n

n-'[Ln(0) - L(0o)] = n-' E Z,(0). (29)
j=1

Now, from (7),

Eq. Z1(0) = P O)lgI Pj(0) [ +1- Pj(0o)]log{ P(0) (30)
P,(o Plg{(00) 1 3 1P(0 0 )

In order to apply Theorem A.2 to f{Z 1(0)}, we need to estimate var(Z1 (0)). Writ-

ing Z3(0) using logit function (see (6)),

Z3(0) = Xj[A,(0) - A3(0o)] + log{ 1 - P1(0)
1 -P(0 0 )

it follows that

var(Z3 (O)) = var(X3 )[X,(0) - X(01

= Pj(o)(I- Pi(00))[A,(0) - A3 (00)] 2.

Since, for any fixed 0, )A,(O) is bounded in absolute value uniformly in j (assumption

(A3)), this implies that there exists a constant 0 < M(0) <00o such that

ivar(ZA0O))I ! M(0) for allij,

and hence

E j2

Thus we can use the law of large numbers to get

n ~ n

n - Z 3 (0) -n 1ZE e. Z(0) --. 0 wpl .(32)

j=1 3=1

From (29), (32) and assumption (A3) it follows that

Pf imn-[Ln(0) - Ln(0o)] < -C(0) < 01 ) (33)
n-oo
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for some c(O) > 0.

Suppose No is the closed interval assumed in condition (A2). For any fixed 0' E

No C 0 and for any 0 satisfying ]0 - 0' 5 6, define Hj(O',0) by the following:

Pj(0O) 1 - Pj(0')H,(O',O) = I log ~( +llOglP(0)

Since Pi(O) is strictly increasing in 0, Pj(O') = 1 and Pj(O') = 0 can be ruled out.

H, (9', 0), as a continuous function of 0, will achieve a maximum value over [0' -6, 0'+

6]. Denote this maximum value as Hj (6, 0'), that is, there exists 0(9 ,j"6) E [0' - 6, 9' +6]

such that

II(6, O') = Hj(0 6 "j's), 9') - max {H 3 (0',0)}. (34)
I8-0l,58

Clearly, for each j

limHj(6') = 0.

Now we have

I log{P(O)X,[1 - pj(o)]-Xj} - log{Pj(O')X,[1 - Pj(O')]l-X,}l

=~~ [ lo{P(O) . 1 - P-(O)
j(o '), + (1 - Xj) log1 P3 () 11

Pi 1 - Pj(O)

< I log{f 9 }I+ Iog{ 1- Pj(0) (35)

- Hj(O',0) HI(6,0') (36)

We shall now prove that {Pj(0)} is equicontinuous'. From (A2), P,(0) is continuous

and bounded in absolute value uniformly in j and in 0 E No. By the mean value

theorem,

IPj(9)-P(O')I = IPJ(')(-9') < pIO-O'I for allj, (37)

3A function P defined on (-oo, oo) is said to be equicontinuous if, given C > 0, there exists a

number 6 > 0 such that Jz' - x" I < 6 implies IP(x') - P(z")I < c for all z', z".
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where C is a point between 0 and 0' for each j, and Cp =supj{IP (Cj)I} which is finite.

Let b = /(p for E > 0, then

if 10-0'1 < 6, IPj(0)-Pj(0')I < c for all j.

Recall that 0' here is any fixed point in No. Note that

1P6' mxJ%(O) 1-P(O
H(b,{0') < max fIlog LI} + max {Ilog I}.-E[o'-b,o'+6] Po (0') e'-6,0'+61 1 - Pj(0')

Since Pj(O) is strictly increasing in 0 ,

P.(011 < p(0')lo
max {Ilog I} "g 1 log }P(')OE(O'-6,0'+bl P " <  a(0o P(') I, (log Pj(0') I

and
max. {Ilog 1-Pj(0) P maxfIlogI) l 1 -Pj(0' +b)

I- P(0') <  m g -P(0') , l P(O')

Therefore,
n_1 ZH 3~l(6,0,) < n_ [oP -6)1 + '5

n = : =5 n-E lgP'-(' ) I + n-_' I1og p I0,

j1 j=1 1P(O') -=1 1P(O')
n= Pj _- b ) n I log

+ n-1I log 1-P 3 0 I6) + n IEjO + b)I.= 1- Pi(0') =1 Pj(0')

From the equicontinuity of {Pj(0)}, for arbitrary f > 0, there exist a sufficiently small

6 > 0 such that

Ilog and g g - Pj(O'+b') <
P3 (0') 4 1 j(O') 4,

where either 6' = 6 or - 6. Thus, for all n and for all 6 sufficiently small

n 1ZH,(6,0')< c.

3=1

Therefore
n

limn-1 Ij(6,0') = 0 as 6 -* 0. (38)
3=2
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We shall now prove that for any Oi / 00, there exists a sufficiently small 6, > 0

and sufficiently small c; > 0 such that

lim P{ sup n-'[L,(O) - L.(Oo)] < -ci} = 1. (39)
n-oo j-0_j, <5

For 0 E {0:10 - Oil < 6}, according to (29),(7), and (36),

n-'[L,(O) - Ln(00 )] = n-'[L,(Oi) - L,(0o)] + n-[Ln(O) - L,(0i)]
n

< n-'[L,(0,) - L.(0o)] + n-1  I-3 (5,o,).
j=1

So we have
n

sup n-[Ln(O) - L.( 0 o)] :5 n-'[L,(Oi) - Ln(0)] + n- E I2I (6,0,).
10-0,1<6 j=1

Substituting Oi for 0 in (33), we will have
P{limn-[L (O,)- L,(0o)] - -c(Oi) - -,} = 1, (40)

where 4 is positive for all i, and from (38) we will have for all i

n

lim n- I H (6,0,) -- 0 as 6 --+ 0.

So there is an open interval 10 - 0il < 6i and a positive number ci, e.g. ci =S! such2'

that (39) holds.

Recall that in assumption (Al) 0 can be defined by two different domains. In the

following, we will discuss these two cases respectively.

Case 1: If E is a bounded closed subset of (-oc, oo), then 0 - {0 : 10 - Ool < 6} is

compact, according to Theorem A.1 it can be covered by finitely many, say m,

such open intervals

(01 - 61,01 -b" 61), (02 - 62,02 + 62) .... ,(Om - 6m,Om + 6m).
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Define event A(' ) by

A ) = { sup n-[L,(O) - Ln(0o)] < -ci} (41)
eO-e, I<s

From P{A(' )} --+ 1 for each i as n -- oo, we have

Pf-, (n) 1
P{ni=1 A i } - 1.

Now we replace ci in (39) with

k(b) = min{cl, c 2 ...... c.

Therefore, (39) holding for all i implies (24).

Case 2: If 0 is not bounded, such as e = (-co, co), we will show

lim P{ sup n-'[L,(0) - L,(O0)] < -cA < 0} = 1 (42)
n-oo 101>A

for a sufficiently large positive number A. Now

e - {o : o- ool < b} n {o : Iol > A}

is bounded compact set, so finally we can get (24) from (42) by defining

k(b) = min{cl,c2 .... ,,CA}.

To complete the proof, we have to prove that (42) is correct. Let 10 1 = A, rewrite

sup n-'[L(O) - L.(Oo)] = n- 1 [L(Oa) - Ln(0o)] + sup n- 1 [L(O)- L(OA)], (43)

181>A I9l>A

where

1~ ~ 1 PP -%0
L=(O ) - Ln(OA)] I nX E log 1+(1_X3 ) PloO)

nj= Pj(0a) n (=1

Since Xj = 0 or 1, and Pj(0) is strictly increasing in 0, then for 0 > A,

:5 SUPn_1 n og P,(0)sup n-'[Ln(O) - Ln(OA)] < supnE "log
6 pj(A)'
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and for 0 < -A,

sup n-[L(O) - L.(OA)l < sup n-1 -' log 1 - P5(O)
101>A o<-A j=1 - Pj(-A)"

Since each item response function has horizontal asymptotes as 0 -- +oo and 0 --

-oo, we can prove that
n

lim supn - 1 1log Pj(0)n-*o 0 j=1 pj (A ) -- 0

and

lim sup n - '1 -log 1-JP() 0
-oo1 - p9(-,)

as A- oo. Therefore we have

lim sup n-'[L,(O) - Ln(OA)] -- 0 as A --+ 0. (44)
n-oo 1l>A

Substituting 0 A for 0 in (33), we have

P{ limn-'[L,(OA) - Ln(00 )] < -ca} = 1. (45)

Formulas (44) and (45) can be used to (43) to get (42). Therefore (42) holds. U

Proof of Corollary 3.1: The MLE, if it exists, obviously satisfies

Ln(O,)- L,(Oo) = 1og"P (X 1,...,X,0 0(6

for all n and for all X 1, . ., X,. It is sufficient to prove that for any f > 0 and 6 > 0,

there exists N(c, 6) such that

Prob{IOn -o01 < b) > 1l- E for all n > N(,E, b).

Suppose 0,, is not consistent, then there exist Eo and bo such that, for any N there

exists some n > N,

Prob{O,, - 0o1 > bo} > Eo.
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Therefore we can obtain a subsequence {0, } such that

Prob{O, - Ool > 6o} > co for all ni. (47)

Thus,

,o <_ imProbO, - O01 > 6o} _< Prob{lim[n - Ool > 6o0].

It is obvious that the event

li:mo[1O.- Oo > 6O]

implies that for infinitely many n

sup [L(O) - Ln(bn)] > 0 for infinitely many n,
Ie-eo I_>6o

because 0 = 0, is a possible value. But then according to (46) the event

sup [L(0) - Ln(0o)] > 0 for infinitely many n
lB-ol>6o

has a probability greater than or equal to qo. This contradicts (24), which implies

that for any c > 0, there exists N such that

Prob{ sup [Ln(0) - Ln(00 )] > 0} <4 for all n > N.
Ie-eo I>6o

This completes the proof. U

Proof of Lemma 3.2: Without loss of generality, we first consider that O,, E

[10 - Ool < b] C No. Since the k, is consistent, the probability of in being con-

tained in the neighborhood of 00 will be close to one, when n is sufficiently large.

The second derivative of the log likelihood function can be written as

L" (0) = A;,(0)[X3 - Pj(0)] - E/:(O). (48)
j=j 

j=
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To prove (48), first notice that it suffices to prove for n=l, that is

L"(0) =A(0)[X1 - P(0)] - I1(0). (49)

Note that

LI(O) = A'(O)XI + log(1 - PI(8)),

so that

L'(O) = A"(O)XI + [log(1 - PI(0))]".

Comparing this with (49) it remains to show that

- [log(1 - Pi(O))]" = A'(0)P1 (O) + 1(0). (50)

However by definition,

11(0) = Eoo[-L(9)] -A"(O)P(O) - [log(1 -PI())]",

which is equivalent to (50).

Consider the numerator of IP?[I
71

IL,(O,) + 1~'() I = IE[A'(0) - Aj(0o)][Xj - P(O )] + E Z jA(0o)[Xj - P(0o)]
j=1 j=1

n 1

+ E A;'(Oo)[Pj(Oo) - P(O:)] + '{I(0,,)- Ij(0:)}l
./=1 j=1

n

_ ~ IA"(0.) - A;(0 o)I (51)
j=1

n
+ I A A(0o)[X - P(On)]I

j=1

+ I Z A;(Oo)[P3(00 ) -P(0)]

+ E I I(0k) - I(On
j=2
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Note that 0 depends on 0 and 0,, through the Taylor expansion and that the distri-

bution of 0,n depends on 00. From (37)

I A;(0o)[P(0o) - Pj(0.)]I < I 0- OolnCp. (52)
j=1

From the mean value theorem

IA"(0.) - A";(0o)I = I A; ...- ))(o: Oo)I

and

InA(&)- 0) ( ))l,

where 0(Aj) is a point between 0 and 0, and Otj) is a point between 0, and 0.

According to assumption (A4), the third derivative of the logit function, )" (0), and

the first derivative of the information function, 1(0), are bounded in absolute value

uniformly in j and in 0, therefore,
n

E IA(O*) - A;'(00 )l < 1 0 - 0olnCA, (53)
j=1

and

ElIbn) - Ij(O*)l < In - 07,1n~j. (54)
j=1

Note that (p, (\, and (I are finite positive numbers and they are independent of j.

We shall now prove

I E A" (0o)[Xj - Pj(0o)]I = O(n'1/2). (55)
j=1

(See Footnote 4.) Assumption (A4) ensures that {A"(0o)} is bounded in absolute

value uniformly in j. By Chebyshev's inequality, for some M > 0,
, ' n En I [A y(oo)]2P,(Oo)(1 _ Pj(Oo)) -

P{E- A"(0)[Xj Pj (0o)] I > n//K I < j= '< MK -

j=1 nK 2

4The notation of a, = Op(bn) means that an is bounded stochasticly by bn in probability, that

is, a, = Op(b,) if and only if for arbitrary ( > 0 there exist M, and N, such that

P{lan/bnl < M , } > 1- C for all n > N,.
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that is, for arbitrary c > 0, take K = (M/f) 1/2, then we have

P{I E A(0o)[Xj - P(Oo)]/n 1/ 21 < K} > 1 -E for all n
j=1

that means we have (55).

Formulas (52), (53), (54), and (55) can be applied to (51) to get

ILn(O) + l(n)(i )l- {I0 - 0oI + Ijn - OGl}nC + 0,(n'/2), (56)

where
C = (P + (A + C,.

We shall now prove

lim P{ l(")(O,)/n > c/2 > 0}=1. (57)

By assumption (A4)

nn-I lI'n) (in) _ Itn)(Oo)l <5 n-I E I Ij (in) -Ij (00)
j=1

_< -0o1¢. (58)

By using the consistency of 6,. and (58), we get

I(n)n)/n - I(n)(Oo)/n - 0 in Pe. as n --* o.

Thus, by assumption (A5), we have (57).

From (56) and (57) we obtain

= (X ,e - Oon+ - - ,I)nC} + P1/2

10-00 1<6 1-001<6 In(n ~ )(n

UIP-oI<6 {+ Op(-n- I -}

31 I(n)()
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Note that

Io0, - 6.1 _ Io;, - Ool + In - Ool and 10 - Ool _ I0 - ol + 16- - 01o,

where the second inequality follows from the fact that 0, is between 0 and 6,. There-

fore

sup IR.(O, X 1,...,X,)I < sup -(3I o + 210 -Oo)C + 110-001<6su P ( ,-I1<8 (31 I+n (in-))

n

For any f > 0, choose

b =-(CI-I,
3 \c/2,/

then we have (23), recalling that 0,, -
0o in Pa. and (36).

The above proof is based on the assumption that 0,, is in the neighborhood (0o -

b, 00 + 6), so we just proved that the conditional probability approaches to one:

lim P[UnIVl = 1, (59)

where

U,-{ sup IR.(O, X1,...,x,) < C}
IO-Oo1<8

and

Vn -{, E [10 -GoI < b] C No}.

Since Corollary 3.1 implies
lim P[V] = 1, (60)
n-oo

it is obvious that (59) and (60) implies lim,.-o P[Un] = 1. Thus we finish the proof.

Proof of Theorem 3.1:

Remark: The following proof will use a similar methodology as Walker's(1969). The

proof itself will not use any assumption about i.i.d.. Instead, it will just depend on
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the results of Lemma 3.1 and Lemma 3.2.

As we discussed in section 3.1, it suffices to prove (13) and (14). To prove (13) it

suffices to prove (20) and (21). Let us start with (20). Rewrite G, as

G, = P.( Xl,.. .,X.nI) j1-0! I1(0)exp{L,,(Q) - ,OId

=P.( Xl... ,X.IO.)exp{L.(Oo) - L.(O)}jfe90> fl(O)exp{L,,(9) - L,,(Oo)}dO.

Since On~ is an MLE,

L,,( 0 ) - Ln(O1.) < 0, (61)

and therefore exp{fLn (0o) - L (On)} I 1. So we have

=exp{Ln(Oo) - Ln(On)}{JI(n) (O) 112j4-0? I(O) exp{L,1 (9) - Ln(00)}dO

where

Goj-e 16 H(0)exp{ILn (0) - Ln (00) 1dO.

By Lemma 3.1, for any b > 0, there exists k(b) > 0 such that

Irn POO {Un} = 1,
n-co

where

= [ sup n-'[Ln(9) - L,(Oo)] < -k(b) < 01. (63)

Define

Vn=[Go :5 exp{ -nk()}]; (64)

notice that

exp{-nk(b)} j 1(O)dO < exp{ -nk()}.
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Because U, g V, we have

lim Pe0o{Go _ exp{-nK(b)}} = 1.

Since

{I(n)(,)}/2exp{-nk()} - 0 in Pe., as n -+ 0,

it follows, (using (62))

G,
lim =0 in Peo. (65),,-oo Pn ( X I, , X n 10,)&,

Thus (20) holds.

Now we prove (21). From (15), rewrite G2 as

G2 = Pn( X ,. ,XnIO) 1 < n(O)exp{L,(0) - L,,(O )}dO

= Pn ( XI,", xle9bo 1(O)exp{- (2-&2)(1 - )}dO

= P,( X,,...l,Xn,)H(0o)-o 11(0) exp{ 0 (2 ( - R,,)}dO.

We shall now observe G2
Pn( Xi,.Xlj,)&"

G2  rI(0o) f 11(o) (0 - k )2
-- 7- ,= -. exp{ (- R,)}dO (66)

P( ,... XnIOn),&n J-eo1< fI(Oo) 252 (1

From condition (Al), in particular the continuouity of 11(0), for any f > 0 we can

choose 6 such that {0: 10 - OoI < 6) C No and

11(0) 11(0) _ .(7
1-f< inf ) < sup- I6-OoI<6 (Oo) - I0-Oo<0,0 (Oo)

Then, using (66)

(1- -)ll(Oo)G 3 < G, < (1 +)(Oo)68)
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where

G3 O exp{ (0-d)2O. (69)

For any c > 0, define

= sup IR,(0, X 1 , - < f], (70)
I0-801<6

and
Dn = 01_o<, exp{- (- 2 (1 + f)}dO < G3 <_ 0,-o<, el 2&n2 ( f}O

= j ep 9 2 (xp (-0 )2(l+)}d0]

(71)

Now we should get rid of RP. Since C, C Dn, and for any f > 0, from Lemma

3.2,

lim Poo {CnI = 1, this implies lim Poo {Dn} = 1.

That is, the probability of the event

expOo (0ek2{2 (1 + )}dO< G3 < exp c)Id0 (72)

(9901< 2( 2&2 (1-)dO 72

converges to 1 as n -+ oo. Therefore, recalling (17),(65),(68), and (69), the only

thing left to establish (13) is to observe that

19eo<6 exp{ (0 - )2(1 + *)}d

- (21r) 1 /2 (1 + f*)-'/ 2 n[0{&n'(0o + 6 - kn)(1 + f-)1/2}-¢bObzl(Oo---On)(l+f*)1/2}],

(73)

where c* = c or - f. Since , is consistent and 5- --+ oo in probability, when e < 1,

0o + b - b6 in Po,

0o - -n, - b - in Po,

&n1 (0o +6- +)(1 +*)1/ 2  oo in Poo,

&n(0 - )(1 + )/ --, -oo in Pe,.
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So

S{8.'(00 + 6- 0n)(l + *)1/2} -. 1 in Poo,

{&"(0o-6- 0,)(1 + E*)1/ 2 } __ 0 in Peo.

Therefore, the difference in the square brackets of (73) converges to unity in proba-

bility. Since the c is arbitrary, this proves (13).

Now we prove (14). First of all we consider (12) and (17) again: G and G2 are

the same except for their rigions of integration: one is (0,O + a&,,, 0, + b&,,) and the

other is{0:10 - OoI < b). For the same f and b given by (67), if (0, + a&n, , + b&,,)

is a subset of {O: 10 - OoI < b}, we must have

1 - f < inf _I(O) < sup 1(0) < 1 + (74)
(6.+a&., i.+b&.) 11(0o) - (0+aa., On+b&.) i(0o)

Define

E.-[(b + a&, bn + b&.) _ {:10 -00o <6)].

Since 0, - 0o in P&, and &,, --* 0 in Po. Thus,

Poo(E,,) -+ 1 as n -+ co, (75)

and hence the probability of (74) converges to 1 as n --+ co. Consider (68) again. If

(0, + a&,, 0,, + b&,) is a subset of {0 : 10 - OoI <6 ), and if we substitute the rigions

of integration of (68) by (0,9 + a&,,, 0,, + b&,,), then the new inequality (76) below will

still hold.

(1 - )l(Oo)G 3  G (1 + E)HI(Oo)',

&n Pn ( X,.,x, -<n - G3, (76)

where
= +""exp { n)2(1- P&)}dO. (77)
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Because of (75), the probability of the event indicated by (76) converges to 1 as

n --+ oo. For the same c given by (72) define

C. [ sup JRn(0, X,,. ,X,)I < c], (78)
(0.+a& , On+b&.)

and

D' = [ji,+ao, -)2 (1 + E)}dO < G3 < JO+&na exp 0 -( n )2 )}dO
nn ~~ & 2&2n (

=~~ Ff:22 +n+a&lb- j

(79)
From (75) and En C C' C D',

Poo { D'- I as n , 00.

Similar to (73), now we shall estimate

r0n+a°" xp (0 - 9/2IO.+ba. p- 252 (1 + f*)}dO, (80)

where c* = c or - c. It is obvious that the quantity in (80) is equal to

(2 )1/2&n(1 + F*)-1I/2' a(1 + f*)1/2) - {b(1 +

Since we can make c arbitrarily small, therefore, using (76) and (77) we can finally

obtain
G -- (27r) 1/ 1 (0o){4(a) - 0(b))Pn( Xi .... I X, I On)&

in probability P 0 . U

B The Proof of Strong Convergence

The proof of Theorem 3.2 is analogous to that of Theorem 3.1 and is also based

on two lemmas and one corollary. However, these intermediate results are stronger

than those used in proving Theorem 3.1.
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Lemma B.1 Under the assumptions of Lemma 3.1, for any given 6 > 0, there exists

k(b) > 0 such that

P lO0 I rm sup n-'[L.(O) - L.(Oo)] < -k()} = 1. (81)

no IO-Oo80 1>6

Proof: The proof of (81) analogous to that of Lemma 3.1 except the following two

changes:

(1) replacing (39) by

Peo{ lim sup n-1 [L,(O) - Ln( 0o)] < -ci} = 1; (82)
n- -

(2) replacing (41) by

A lim sup n-'[Ln(O) - Ln(0 0 )] < -Ci}.
n-oo 19_o, 1<6

Now we only need to prove (82). Since

lim-n-[L,(Oi)- L,(0o)]

is measureable with respect to the tail a field

a(Zn(o,), Z+I (0i),.

by the Kolmogorov's 0 - 1 law (Billingsley, p295) it must be a "nonrandom"

constant with probability 1. Denote this constant as 77. According to (40),

Pqo{i = limn-'[L,(O,) - L.(00 )] < -c(O,) < 0} 1.

Choose
c(40) -

2

and choose b small enough such that

lirn n 1 HI(6, O0) < c,
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(see (34) for the definition of IJ(6, 0,)), thus
I

lim sup n-[L(O) - Ln(Oo)] _< Tim n-[Ln(Oi) - Ln(Oo)] +limn - ' ZI (,O,)
-- I- <6 n-oo

_ ?7 + f < -c(Oi) almost surely.

Thus (82) holds. U

Corollary B.1 Lemma B.1 ensures that

Pe0 {2im n = 001 = 1.

Proof: Analogous to that of Wald (1949) and omitted. U

Lemma B.2 Under the assumptions of Lemma 3.2, for any c > 0, there exists b

such that

Po0 {Ilir sup IRn( X,...,X,,0)I < C} = 1. (83)
I0-Oo1<6

Proof: Analogous to that of Lemma 3.2 and omitted. 0

Proof of Theorem 3.2: Based on Lemma B.1, Lemma B.2 and Corrollary B.1. The

basic steps are analogous to those of Theorem 3.1 and omitted. N

C The Proof of Convergence in Manifest Proba-

bility

Proof of Theorem 3.3: Theorem 3.1 implies that for arbitrary 0 and arbitrary

> 0,

Pe{IA.( Xl,... ,X.)- Al > c} -3,
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as n --- oo. Define

H.(O,,E) = Po{ A.( X 1,...,Xn) - Al > c}

It is clear that for any 0 and c > 0 that

0 < Hn(O,c) 1 and lim H,(O, c) = 0.

By Lebesgue's bounded convergence theorem (Billingsley, p214),

f H,(0, E)fl(0)dO -- 0.

That is,

P{IAn( X1,.. .,Xn) - Al > 4 = JP{lAn( Xi,...,X.) - Al > I0}I(0)d0

= j H(o, )H(0)dO --, 0.

This proves Theorem 3.3. U

Acknowledgement.
The authors wish to thank Kumar Joag-Dev, Brian Junker, Bert Green, Paul

Holland, Robert Mislevy, and especially Zhiliang Ying for their useful comments and

discussions.

References

Bishop, A., Fienberg, S., & Holland, P. (1975). Discrete multivariate analysis: Theory and

practice. Cambridge, MA: MIT Press.

Billingsley, P. (1986). Probability and measure. New York: John Wiley & Sons.

Bock, R.D., & Mislevy R.J. (1982). Adaptive EAP estimation of ability in a microcomputer

environment. Applied Psychological Measurement, 6, 431-444.

Chang, H., & Stout, W.F. (1990, June). The asymptotic posterior normality on IRT model.

Paper presented at 1990 ONR Contractors' Meeting on Model-Based Measurement, Portland,

Oregon.

40



Drasgow, F. (1987). A study of measurement bias of two standard psychological tests. Journal

of Applied Psychology, 72, 19-30.

Holland, P.W. (1990). The Dutch identity: a new tool for the study of item response theory

models. Psychometrika, 55, 5-18.

Junker, B.W. (1988). Statistical aspects of a new latent trait model, Ph.D. dissertation, Depart-

ment of Statistics, University of Illino.6 at Urbana-Champaign.

Lehmann, E.L. (1983). Theory of point estimation. New York: John Wiley & Sons.

Lindley, D.V. (1965). Introduction to probability and statistics, part 2: Inference. London:

Cambridge University Press.

Lord, F.M. (1980). Applications of item response theory to practical testing problems. Hillsdale,

NJ: Lawrence Erlbaum.

Serfling, R.J. (1980). Approximation theorems in mathematical statistics. New York: John Wiley

& Sons.

Stout, W.F. (1974). Almost sure convergence. New York: Academic Press.

Stout, W.F. (1990). A new item response theory modeling approach with applications to unidi-

mensionality assessment and ability estimation. Psychometrika, 55, 293-325.

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann.Math.Statist.,

20, 595-601.

Walker, A.M. (1969). On the asymptotic behaviour of posterior distributions.J.R.Statist.Soc.Ser.

B,31, 80-88.

Wolfowtiz, J. (1949). On Wald's proof of the consistency of the maximum likelihood estimate.

Ann. Math. Statist., 20, 602-603.

41



Distribution List

Dr. Terry Ackeran Dr. Robert Brennan Dr. Ralph J. DeAyah
Edutonal Psychology American College Testing menauaent Statistics,
210 Education Bldg Programs and Evaluation
University of Illinois P.O0. Box 168 Benjamin Bldg. Rm. 4112
Champaign. IL 6180 Iowa City. LA 52243 University of Maryland

College Park. MD 20742
Dr. James Algina Dr. Gregory Candeil
1403 Norman Hall C1TWMofraw-Hill Dr. Lou DiBelo,
Univerity, of Flo"id 2500 Garden Road CERL
Gainesville FIL 3260 Monterey, CA 93940 University of liinois

103 South Matbew, Avenue
Dr. Etling B. Anderaen Dr. John B. Carroll Lirbat., IL 61801
Department of Statistics 409 Elliott Rd,. North
Studiealraedle 6 Chapel Hilt, NC 27514 Dr. Dmttprad Divo
1455 Copenhagen Ceter for Naval Analysis
DENMARKl Dr. John MIL Carroll 4401 Ford Avenue

IBM Watson Reaearch Cente P.O. Ba 16268
Dr. Ronald Armstrong Uaer lnteao Institute Alexandria, VA WWA.268
Rutgers University P.O. Boz 704
Graduate School of Management Yorktown Heights NY 10596 Mr. Hei-Ki Dog
Newark. NJ 07102 Bell Communications Research

Dr. Robert MI. Carroll Room PYA-IK207
Dr. Eva L. Baker Chief of Naval Operations P.O. BOX 1L20
UCLA Center for the Study OP-0182 Pisatmay. NJ 08855-1320

of Evaluation Washington. DC 2050
145 Moore Hail Dr. Fritz Draagow
University of California Dr. Raymond E. Chriatal University of Illinos
Los Angeles, CA 90024 UES LAMP Scienor Advisor Department of Psychology

AFHRIJM0EL 603 E. Daniel St.
Dr. Laura L. Barnes Brooks AFtB, TIX 78235 Champaign IL 61820
College of Education
University of Toledo Mr. Hue Hue Chang Defense Technical
2801 W. Bancroft Street University of Illinois Information Center
Toledo, OH 43606 Department of Statistics Cameron Station. Bldg 5

101 Illini Hall Ale.vtria. VA 22314
Dr William Mo. Bert 725 South Wright St. ~oia
University of Minnesota Champaign, IL 61820
Dept. of Educ. Psychology Dr. Stephen Dunbar
330 Burton Hall Dr. Norman Cliff 224B Undquist Center
178 Pillsbury Dr., S.E. Department of Psychology for NMaurement
Minneapolis, MN 5545 Univ. Of S06 Califoemia University of Ilowa

Lm.o Angeles CA 90089.1061 Iowa City, LA S2242
Dr. Isaac Bejar
La1w School Admissiona Dirctr Manpower Progra Dr. James A. Eares;

services Center for Naval Ansla" Air Force Human Resources Lab
P.O. BOX 40 4401 Ford Avenue &cnoke AMB TX 7823
Newtown, PA 1894.004 P.O. Box 16268

Alexandria. VA 22302406 Dr. Susan Embretaon
Dr. Ira Bernstein University of Kansas
Department of Psychology Director, Psychology Deparmn
University of Texs Manpower Support and 426 Frase
P.O. Box 19528 Readinesa Program Laarence, KS 6604
Arlington. TIX 76019.028 Center for Naval Analysis

2W0 North Beauregard Street Dr. Georg Englehard., Jr.
Dr. Menucha Birenbaum Alnxndria, VA 22311 Division of Educational Studiea
School of Education Emory University
Tel Aiv University Dr. Stanley Collyer 210 Fishlumne Bldg.
Ramat Aviv 69978 Office of Naval Technology Alianta, GA 30322
ISRAEL Code 22

800 N. Quincy Street ERIC Facility-Acquisitions
Dr. Arthur S. BkaWea Arlington, VA 2217-5=0 2440 Reaearch Blvd Suite 550
Code N712 Rockvlle MD 20850.3238
Naval Training System Center Dr. Hans F. Crombag
Orlando, FL 32813-7100 Faculty of Law Dr. Benjamin A. Faittank

University of Larburg Operational Technologies Corp.
Dr. Bruce Blosom P.O. Boa 616 S82S Callaghan. Suite 225
Defense Manpower Data Center Maastricht San Antonio, TX 78228
9Pacific St. The NETHERLANDS 6200 MD
Suite 135A Dr. Marhal 3. Farr, Consultan

Montre, CA 93943.3231 MsL Carolyn R. Crone Cognitive a Inatructionals Scene
Johns Hopkins University 2S20 North Vernon Street

Cit. Arnold Bobrer Deprten of Psycholog, Arlington. VA 2220
Soedi Psyrhologlsch OnderzAne Chaeces A 34th Street
Reltrutering,-En Selectiscentrum Baltimore MD 21218 Dr. P-A. Federio
Kwartier Kooingen Amitd code 51
Bruijnetraar Dr. Timothyr Davey NPRDC
1120 Brusaels BELGIUM Amerhca College Tesin Program San Diegn% CA 921S2.680

P.O. BOa 168
Dr. Robert Breaux Iowa City. IA 52243 Dr. Leonard Feldt
code 201 Undqluist Center
Naval Training Slystems Center Dr. C. Mo. Dayton for Measurement
Orlando, FL 328263224 Department of Measureiment University of Iowa

Statistica & Evaluation Iowa City. IA 52242
College of Education
Universkty at Matyland
College Park MID 20742



U~niversity of Illinoitout 12nm.~

Dr. Richard L. Pugmson Dr. Grant Havng Prt(L John A. Kewl
Amaerica Colleg Testing Senior Research Scientist Deparument of Paytholo
P.O. BOXn mg Division of Measuremnt University of Newcaste
Iowai Cty. 1A 52M4 Rearch and Services NS.W. 230

Educational Testing Servce AUSTRAUIA
Dr. Gerhard Fischer Princeton., NJ 06541
Liebiggps 5/3 Dr. ]na-kam Kim
A 1010 Venm Ms. Rebeces Heter Depirtment of Psychology
AUSTR.IA Ny Personnel R&D Cer Midde Teonnessee Seat

Code 63 Uiniversity
Dr. Myron PFuch San DieMe CA 92152-4M0 P.O. BOX Sfl
U.S. Army Hadquarter Murfreboen. TN 37132
DAPE-MR Dr. Thomas M. Hisch
The Pentagon ACT~ Mr. Soon-Boon Kem
Washign DC 2031"M00 P.O0. Box 168 Computer~bmd Edumejon

lows, City. 1A 52243 Research Laboratory
ProL Donald Fkagerald University of liinois
University of Now England Dr. Paul W. Holland Urbana, IL 61801
Department of Psychologyr Educaiona Teating Service. 21-T
Armidalle, New South Wales 2351 Rosedale Road Dr. G. Gage Kingsbury
AUSmAUA Princeton. NJ 06541 Poetland Public Schools

Research and Evaluation Department
Mr. Paul Foley Dr. Paul Hont S01 North Dison Stuee
Navy Personnel R&D Cenecr 6770G Street, 0184 P. OL Box 3107
Sen Diego, CA 92152-606 Chula Vast, CA 92010 Portland. OR 972W93107

Dr. Alfred R. Fregly ML. Julia S. Bough Dr. Williamo Koch
AFOSRINL, Bldg 410 Cambridge University Presa Bon 7246. Mas. and EvaL Ctr.
Boiling AFE. DC 2W32-6448 40 West 2O~h Street University of Tean-Austin

D.RbrD.GbosNew York. NY 10011 Austin, TX 7870

Illinoia State Paychiaet Inst. Dr. William Howell Dr. Richard J. Koubek
urn 529W Ozief Scientist Department of Biomedical
1601 W. Taylor street AFHRLfCA A Human Falors
Chicage. IL 6012 Brooks AFB, 7X( 7W55601 139 Enginaering a Math Bldg.

Wright State University
Dr. Janice Gifford Dr. Lloyd Humphreya Darumn OH 45435
University of Massachtuetts University of Illinois
School of Educatio Department of Psychology Dr. Leonard Kroeker
Amherst, MA 01003 60 East Danie Street Nay Personnel R&D Center

Champaign, IL 61820 Code 62
Dr. Drew Gitomer San Dieg, CA 92152-6800
Educational Testing Service Dr. Semn Hunks
Princeton NJ 08541 3-104 Educ N. Dr. Jeny Lehnrus

University of Alberta Defenae Manpoewr Data Center
Dr. Robert Glaser Edmonton. Alberta Suite 400
Leaming Research CANADA TiG 205 1600 Wilson Blvd

& Development Center Rob VA 2220
University of Pittsburgh Dr. Huynh Huynh
393 Oliara Street College of Education Dr. Thomas Leonard
Pittsburgh, PA 15260 Univ. of South Carolina University of wisconir

Columbia, SC 29M0 Department of Statistics
Dr. Sherrie Gott 1210 Wie Dayton Street
AP1IRIMOMJ Dr. Robert Jannarone Madison, VA 53705
Brooks APB, TX 78235-5601 iekw, and Com1pute Eog Dept.

University of South Carolina Dr. Michwal Levine
Dr. Bert Grown Columbua. SC 2920 Educational Psycholog
Job-s Hopkins, University 210 Education Bldg.
Department of Paycholo Dr. Kumar Joag-dev University of Illinois
Charlea A 34th Street University of Illinois ChmagIL 61801
Baltimome MD 21218 Departent of Statistics

101 Wligi Hal Dr. Charlet L1.is
Michael Habon 725 South Wright Street Educational Testing Service
DORMIER GMBH Champaign, IL 61820 Princeton NJ 08541.0001
P.O. Box 1420
D-790 Priedrichahafen I Dr. Douglas H. Jone Mr. Rodney Lam
WEST GERMANY 128 Woodifern Court Universty of Illinois

Tomn River. NJ 06753 Depatment of Psychology
ProL Edward Basertal 60 . Daniel St.
School of Education Dr. Brien Junker Campain% IL 6182
Stanford University Cornegie-Melon University D. ~ L~
Staoord. CA 9430 Department of StatisticsDrRoetLLi

Scheedy Park Campus Dee 249
Dr. Ronald K. Bmbleton Pittsburgh, PA 1S213 University of Colorado
University of Massachunetts Boulder. (X0 80309.084
Laboratory of Pschmetric Dr. Michael Kaplan

and Evauluaiv Rsearch Office, of Basic Resac Dr. Robert Locera
Bill South, Raom 152 U.S. Army Resarch Institute Center for Nava Analsi
Ambaw, MA 01000 5001 Eienhwe Avenue 4401 Ford Avente

Almsetdri. VA Z33-560 P.O. Bee: 16208
Dr. Delayn HarnIach Alhmodla., VA 2Z304268
University of Ilnois Dr. Mkto S. Kaue
51 Gamy Delve European Science Coordination Dr. Frederic M. Lord
Chapaign IL 618M Ofie Educational Testing Service

U.S. Army Resarch Institute Prineton. NJ 08541
Ban 65
FPO Ne, York 0951091150



Univrsity of Iilioiaout 12/12M0

Dr. Richard Liiedet Lherwm Dr. Futo S=ejea
ACr Navel Cetrfor Applied Resarh Depatmen Of Psycholow
P.O. Bcs 168 in Artificial Intelligence University of Teenemew
Iowa City. IA 52243 Naval Research Laboratory 310B Astin Pwy Oldt

Code 5510 Knomils TN 379164900
Dr. Georg Ba Macredy Wasigtoa, DC 20375.000
Depiartiment ot Measurement Mr. Drew San&

Statistcsa &Evaltusaca Dr. Harold F. O'Nel. Jr. NPRDC Code 62
Collge of Education Scolof Education - WPH O01 San Dielln, CA 9M12.60
univrit Of Maryland Departaet" of EAduona
College Part. MD, 20742 Paydioog & Technoloo LVweA Scoe

Univmsty of Southern Camoima Psychological A Quantitstive
Dr. Gusy Marso Ls Angeles. CA 900890M1 Founodations
Stop 31-E CIllege of Education
Educatiossel Testing Service Dr. Janaes IL Olsen Uiersity of town
Princeton NJ ow~l WICAT Systems Iovis City IA 522412

1875 South State Street
Dr. OkMn 3. Martin Cram, UT 84M8 Dr. Mary Scntz
Office of Chief of Naval 4100 Parkaide

Operations (0P913 F) Office of Naval Resarch,. Carlsbad. CA 9200
Navy Anma, Room 2832 code 1142(3
Washiington. DC U35 =3 N. Quincy Street or. Din Segal

Arlington VA =1174000 Navy Personnel R&D Center
Dr. Jamnes R. McBride (6 Copies) Son DkIeg CA 92152
HumRRO
6M3 Elmnhurst Drive Dr. Judith Ceasana Dr. Robin Sbeal
San Dirge, CA 92120 Basic Research Office University of Illinois

AMu Research Inistitute Departmient of Statistcs
Dr. Clarence C. McCormick SON1 Eisenhoewer Avenue 101 l~eni Hall
HQ, USMEPCOM/MEPCr Alexndria, VA 22333 725 South Wright SL.
350 Green Bay Road Champaign, IL 6100
North Chicalo, IL 60064 Dr. Jesse Otanky

Institute for Defense Analyses Dr. Kazuo Sbigrnmu
Mr. Christopher McCuske 1801 N. Beauregard St. 7-9-24 IKugenuum-Knigan
IUoversity of Ilinois Aleandfria. VA 2311 Fujisaw 251
Deparmn of psychology JAPAN
GM02. Daniel St. Dr. Pete J. Pashley
Champaign IL 61820 Edlucational Testing Service Dr. Randall Shumaker

Rosedale Road Naval Research Laboratory
Dr. Robert McKinley Princeton, NJ 011541 Code 5510
Educational Testing Service 4555 Overlook Avenue. S.W.
Princeton, NJ 06541 Wayne ML Patience Washington, DC 2037S.5000

Americao Council on Education
Mr. Alan Mead GED Testing Servce Suite 20 Dr. Richard B. Snow
c/o Dr. Michael Levine one DuPont Ordle, NW School of Educatio
Educational Psydila Washington, DC M%0 Stanford University
210 Edlucation Bldg. Stanford. CA 943W
Unkveeity of Illinois Dr. Jams Pmalo
Champaignx IL 61801 Departimen of Psydilogr Dr. Richard C.Srne

Portla State University, Na" Personnel R&D Center
Dr. Tmothy Miller P.O. Box 751 Son Diego, CA 921524800
ACTr Portland. OR 9W20
P.O0. Box 168 Dr. Judy Spray
Iowa City, [A 5224 Dept. of Administratie Sciences ACTr

Code 54 P.O. Box 168
Dr. Robert Misievy Naval Postgraduate School Iowa City. IA 5214
Educational Testing Servic Monterey, CA 933500
Princeon NJ 06541 Dr. Marthe Stocking

Dr. Mast D. Reckase Edlucational Testing Servic
Dr. Will=s Montague ACr Princeton, NJ 00841
NPRDC Code 13 P.O. BOX 168
Son Diego. CA 921524600 losa City. IA 52243 Dr. Peter Stoloff

Center for Naval Analysis
ML. Kathleen Moreno Dr. Malcolm Rae 4401 Ford Avenue
Navy Personnel R&D Center AFHRIJM A P.O. BOXn 16M6
code 62 Brooks APOT 178235 Alexndia, VA 223024M4
San Diegt, CA 92152.460

Mr. Steme Resm Dr. Wilia Stout
Headuarer Marine CorP N660 Ellott Hall Utaversity at Ilinois
Code MPI-20 UNaesity of Mintnota Department of Stamistie
Waington, DC 20380 753. River Road 101 "~n Hal

Mampo84,k MN 53545W4 725 South Wrigh St.
Dr. Ratn Nandskoxair Champain IL 6100
Educational Studies Dr. Carl Ross
Willard Hoat Room 213E CNEET-PDCD Dr. Hasebar Swan~aeh
University of Delaware Bilding go Laboratory of Psyeboesetrlc mid
Newarit. DE 19716 Great Lakes Nit IL a00m Evahisition Research

School of Eduestion
Librry NPR.DC Dr. I. Ryan Univesit of Mancsuetta
Code P20IL Deputasu of Education Amber. MA 01003
Son Dieg. CA 9212460 Uswvuaty at South Caasn

Colusibis SC 2920 Mr. Brad Syasyson
Navy Perone R&D Cna
Code42
San Diego, CA 92152.WO



Universty of minlho tu I2VIZ"9

Dr. John Tuiywy Major Jobn Welb
APOSRJNI. Bldg. 410 AFI4RLIMOAN
Bobrgn APM DC 20332448 Brooks AF. TX 78M2

* Dr. Kikusm TatauKa Dr. Daugm, Weaze
Educational Testing Sawior Code 51
Mail Stop 03-T Navy Persomnel R&D Cie
Prancaton. NJ 0641 Sari D"%go CA 92132.460

*Dr. Maurice Tatsuokat Dr. Rand R- Wileca
Educational T"Urng Saex. Lniweraity of Southern
Mail Stop 03-T Caliorni
Princeton. NJ 06541 Dep -tm of Paycholog

Loa Anples, CA 9000W1061
Dr. David Tbiasm
Deparmn of Paycblsoo 0ema Military RaprinenAtve
Uvaity of Ksoma ATIN: Wolfgan Wildgrabe
LAwrnm KS 44044 Sutkraweftamot

D.5300 Bonn 2
Mr Thomas I Thomas m0 Brandywine Sutret. NW
Jobna Hopinst Univerity Waoipon DC 2W016
Deartmen of Paycbologr
Chrles A 34th Sutret Dr. Bruor Williams
Baltimore, MD 21218 Department of Eduional

Mr. Gary Thomson Uniwnerity of Illinois
Univeruat of liinois liena. IL 61601
Educmbed Psyiogol
Ceacxpai. IL 6182 Dr. ilda Wing

Federal Aviation Adinaration
Dr. Robert Tautakawa W00 Independence Ave. SW
Iieivrtay of Misouri Wasbington. DC 2D591
Department of Statistics
222 Math. Sciences Bid&. Mr. John H. Wolfe
Coumnbia, MO 65211 Nvqn Personrnel R&D Center

Son Diego, CA 92132.U0
Dr, Ladyard Tuicker
Unreerait of Ilio Dr. George Wong
Deprtet of PaycloloW Bicatatiatica Laboratory
603 F. Daniel Stroet Memorial Sloon-Kettering
Orampaiga. IL 6182 Cance Center

127 York Avenue
Dr. Dvmid Vale Now York. NY 10021

A - Systems Coev
2233 Univeruy Avenue Dr. Wallac Wuffct*. III
Suite 440 Navy Personnel R&D Center
SL Paul. MN SS114 Code SI

San Diepo, CA 92152-460
Dr, Frank L Vicino
Naoy Personnel R&D Center Dr. Knexno Yamamoto
San Diego CA 92132.480 02-T

Educational Testing Servior
Dr. Howard Wainer Rosedale Road
Edueational Teating Service Princeton. NJ 06541
Princeton. NJ 08341

Dr. Wendy Yen
Dr. Michael T. Waller CFrB/Moflw Hil
University of Wisonuin-Milwaukee Del Monte Reaearch Part
Educational Paydriolog Departent Monere, CA 930
Box 413
Milwaukee WI 53201 Dr. Joseph L Young

National Science-Foundation
Dr. Ming-Mei Wang Room 320
Educational Tekt Service Ow a Street, N.W.
Mail Stop 03-T Walbingon DC 2WSO
Prioceton NJ 06341

Mr. Anthony R. Zara
Dr. Thomas A. Warm. Nationa Council Of State
FAA Academoy AAC934D Boards of Nursing Inr-
P.O. Ban 25M9 625 North Michigan Avenue
Oklahoma City. OK 73125 Suite, 1544

OrcgaIL 6"611
Dr. Brien Waters,
HucaRRO
11005S, Warbinro
Almadria, VA 22314

Dr. Davd I. Wea
FN Elot HaN
Uawavity, of Minesota
752E River Road

* Mleureapoib MN 554654W4

Dr. Ronald A. Welomanm
Bce 146
CArme CA 9392


